文章目录

Problem:
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
public class LRUCache {

private HashMap<Integer,Integer> _cache;

private int _capacity;

private Node _head=null;

private Node _end=null;

public LRUCache(int capacity) {

this._head=new Node();
this._end=new Node();

this._head.next=this._end;
this._end.next=null;

this._capacity=capacity;
this._cache=new HashMap<Integer,Integer>(capacity);
}

public int get(int key) {
int ret=-1;

if(this._cache.containsKey(key))
{
ret=this._cache.get(key);
this.moveToFirst(key);
}


return ret;
}

public void set(int key, int value) {
if(!this._cache.containsKey(key))
{
if(_cache.size()>=this._capacity)
{
this._cache.remove(this.popKey());
}

this.insertToFirst(key);
}else{
this.moveToFirst(key);
}

this._cache.put(key, value);
}

private void moveToFirst(Integer key)
{

Node node=this._head;
Node node2=null;

while(node.next!=null)
{

if(key.equals(node.key))
{
break;
}
node2=node;
node=node.next;
}

node2.next=node.next;
node.next=this._head.next;
this._head.next=node;
}

private void insertToFirst(Integer key)
{

Node node=new Node(key);
node.next=this._head.next;
this._head.next=node;

}


private Integer popKey()
{

int key=-1;
Node node=this._head;
Node node2=null;

while(node.next!=this._end)
{
node2=node;
node=node.next;
}

key=node.key;
node2.next=this._end;

return key;
}




class Node{
public Integer key;

public Node next;

public Node()
{


}

public Node(Integer key)
{

this.key=key;
}

public Node clone(){
Node node=new Node();
node.key=this.key;
node.next=this.next;

return node;
}
}
}

其实在Java中最方便实现LRUCache的方法就是使用LinkedHashMap,天然的集成了该功能,但是LeetCode在这题中并没有引用LinkedHashMap的包,-_-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class LRUCache extends LinkedHashMap<Integer,Integer> {
private int maxCacheNum=10;

public LRUCache(int capacity)
{

super(capacity,0.75f,true);//这里第三个参数一定要为true,这样就表示该LinkedHashMap是使用了访问速度来链表
this.maxCacheNum=capacity;
}

public int get(int key) {
if(super.containsKey(key))
{
return super.get(key);
}else{
return -1;
}
}

public void set(int key, int value) {
super.put(key, value);
}

/**
* 重写删除最少用元素的方法
*/

@Override
protected boolean removeEldestEntry(Map.Entry<Integer,Integer> eldest) {
return this.size()>maxCacheNum;
}
}

本作品采用[知识共享署名-非商业性使用-相同方式共享 2.5]中国大陆许可协议进行许可,我的博客欢迎复制共享,但在同时,希望保留我的署名权kubiCode,并且,不得用于商业用途。如您有任何疑问或者授权方面的协商,请给我留言

文章目录