文章目录
Problem: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 public class LRUCache { private HashMap<Integer,Integer> _ cache; private int _ capacity; private Node _ head=null ; private Node _ end=null ; public LRUCache (int capacity) { this ._ head=new Node(); this ._ end=new Node(); this ._ head.next=this ._ end; this ._ end.next=null ; this ._ capacity=capacity; this ._ cache=new HashMap<Integer,Integer>(capacity); } public int get (int key) { int ret=-1 ; if (this ._ cache.containsKey(key)) { ret=this ._ cache.get(key); this .moveToFirst(key); } return ret; } public void set (int key, int value) { if (!this ._ cache.containsKey(key)) { if (_ cache.size()>=this ._ capacity) { this ._ cache.remove(this .popKey()); } this .insertToFirst(key); }else { this .moveToFirst(key); } this ._ cache.put(key, value); } private void moveToFirst (Integer key) { Node node=this ._ head; Node node2=null ; while (node.next!=null ) { if (key.equals(node.key)) { break ; } node2=node; node=node.next; } node2.next=node.next; node.next=this ._ head.next; this ._ head.next=node; } private void insertToFirst (Integer key) { Node node=new Node(key); node.next=this ._ head.next; this ._ head.next=node; } private Integer popKey () { int key=-1 ; Node node=this ._ head; Node node2=null ; while (node.next!=this ._ end) { node2=node; node=node.next; } key=node.key; node2.next=this ._ end; return key; } class Node { public Integer key; public Node next; public Node () { } public Node (Integer key) { this .key=key; } public Node clone () { Node node=new Node(); node.key=this .key; node.next=this .next; return node; } } }
其实在Java中最方便实现LRUCache的方法就是使用LinkedHashMap
,天然的集成了该功能,但是LeetCode在这题中并没有引用LinkedHashMap
的包,-_-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 public class LRUCache extends LinkedHashMap <Integer ,Integer > { private int maxCacheNum=10 ; public LRUCache (int capacity) { super (capacity,0.75f ,true ); this .maxCacheNum=capacity; } public int get (int key) { if (super .containsKey(key)) { return super .get(key); }else { return -1 ; } } public void set (int key, int value) { super .put(key, value); } /** * 重写删除最少用元素的方法 */ @Override protected boolean removeEldestEntry (Map.Entry<Integer,Integer> eldest) { return this .size()>maxCacheNum; } }
本作品采用[知识共享署名-非商业性使用-相同方式共享 2.5] 中国大陆许可协议进行许可,我的博客欢迎复制共享,但在同时,希望保留我的署名权kubiCode ,并且,不得用于商业用途。如您有任何疑问或者授权方面的协商,请给我留言 。